Construction of Signature-tagged Mutant Library in Mesorhizobium loti as a Powerful Tool for Functional Genomics

نویسندگان

  • Yoshikazu Shimoda
  • Hisayuki Mitsui
  • Hiroko Kamimatsuse
  • Kiwamu Minamisawa
  • Eri Nishiyama
  • Yoshiyuki Ohtsubo
  • Yuji Nagata
  • Masataka Tsuda
  • Sayaka Shinpo
  • Akiko Watanabe
  • Mitsuyo Kohara
  • Manabu Yamada
  • Yasukazu Nakamura
  • Satoshi Tabata
  • Shusei Sato
چکیده

Rhizobia are nitrogen-fixing soil bacteria that establish endosymbiosis with some leguminous plants. The completion of several rhizobial genome sequences provides opportunities for genome-wide functional studies of the physiological roles of many rhizobial genes. In order to carry out genome-wide phenotypic screenings, we have constructed a large mutant library of the nitrogen-fixing symbiotic bacterium, Mesorhizobium loti, by transposon mutagenesis. Transposon insertion mutants were generated using the signature-tagged mutagenesis (STM) technique and a total of 29,330 independent mutants were obtained. Along with the collection of transposon mutants, we have determined the transposon insertion sites for 7892 clones, and confirmed insertions in 3680 non-redundant M. loti genes (50.5% of the total number of M. loti genes). Transposon insertions were randomly distributed throughout the M. loti genome without any bias toward G+C contents of insertion target sites and transposon plasmids used for the mutagenesis. We also show the utility of STM mutants by examining the specificity of signature tags and test screenings for growth- and nodulation-deficient mutants. This defined mutant library allows for genome-wide forward- and reverse-genetic functional studies of M. loti and will serve as an invaluable resource for researchers to further our understanding of rhizobial biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole-Genome Sequence of the Nitrogen-Fixing Symbiotic Rhizobium Mesorhizobium loti Strain TONO

Mesorhizobium loti is the nitrogen-fixing microsymbiont for legumes of the genus Lotus Here, we report the whole-genome sequence of a Mesorhizobium loti strain, TONO, which is used as a symbiont for the model legume Lotus japonicus The whole-genome sequence of the strain TONO will be a solid platform for comparative genomics analyses and for the identification of genes responsible for the symbi...

متن کامل

Ordered cosmid library of the Mesorhizobium loti MAFF303099 genome for systematic gene disruption and complementation analysis.

For effective exploitation of the genome sequence information of Lotus microsymbiont, Mesorhizobium loti MAFF303099, to discover gene functions, we have constructed an ordered and mutually overlapping cosmid library using an IncP broad host-range vector. The library consisted of 480 clones to cover approximately 99.6% of the genome with average insert size and overlap of 26.9 and 11.1 kbp, resp...

متن کامل

The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes

Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively th...

متن کامل

Mesorhizobium loti produces nodPQ-dependent sulfated cell surface polysaccharides.

Leguminous plants and bacteria from the family Rhizobiaceae form a symbiotic relationship, which culminates in novel plant structures called root nodules. The indeterminate symbiosis that forms between Sinorhizobium meliloti and alfalfa requires biosynthesis of Nod factor, a beta-1,4-linked lipochitooligosaccharide that contains an essential 6-O-sulfate modification. S. meliloti also produces s...

متن کامل

The Mesorhizobium loti purB gene is involved in infection thread formation and nodule development in Lotus japonicus.

The purB and purH mutants of Mesorhizobium loti exhibited purine auxotrophy and nodulation deficiency on Lotus japonicus. In the presence of adenine, only the purH mutant induced nodule formation and the purB mutant produced few infection threads, suggesting that 5-aminoimidazole-4-carboxamide ribonucleotide biosynthesis catalyzed by PurB is required for the establishment of symbiosis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008